The application of seismic analysis techniques for the identification of structural and stratigraphic features in carbonate environments

> Ahmed Elghorori¹, Gaynor Paton¹, Anthony Avu¹ Frank van Kleef²

> > 1 – ffA 2 – Dubai Petroleum

Project Area

œ

Teric

2

Rudist reefbioherms in the Shuaiba, Mishrif and Simsima

- Cretaceous is split into 3 cycles separated by regional unconformities
- Sedimentary succession influenced by sea level fluctuations.
- Shallow marine carbonates accumulation.

Objectives

Part 1: Structural

- Lower Cretaceous Thamama complex
- Fault Analysis

Part 2: Stratigraphic

- Middle Cretaceous Mishrif buildup
- Pinchout investigation

Part 1: Structural workflow

5

Noise cancellation: original data

Noise cancellation: conditioned data

Reduced presence of high dip coherent noise with improved reflector continuity Fractures have also been preserved

Thamama faulting

Thamama faulting

Fault Analysis

Fault Trends

Fault Density

Conclusions

- Curvature picked up the NW-SE regional faults
- SO Semblance picked up NE-SW small scale faults
- Using a combination of the two techniques is the best solution for complete imaging of the faults
- Fault Trends and Density volumes support the bi-directional faulting theory.

Part 2: Stratigraphic analysis

Edgell, 1996

- Rudist reefs form in water depths of ~10m
- As the water recedes the reefs start prograding
- Sub aerial exposure and subsequent leaching causes moldic porosity
- Deposition of the overlying mudstone forms a seal Good Reservoir
- So the most productive zones are seen as top laps onto the Top Mishrif unconformity.
- Find the most productive zones in the Mishrif formation

Part 2: Stratigraphic analysis

Spectral Enhancement

- Split the spectral into discrete frequency bands
- Noise Cancel each band
- Apply a weighting factor
- Recombine

Spectral Enhancement

Frequency Decomposition

Prograding clinoform zones containing pinchouts show a dominance of 4 and 8 cyc/kft central frequencies

Horizon slice 100ft below Top Mishrif.

Prograding clinoforms associated with the rudist reefs visible as red / purple zones in the RGB blend.

Bedform attribute

Bedform attribute helps define the individual clinoforms.

Frequency bedform attribute

Colour coding the layers between the bedforms with the Instantaneous Frequency helps identify the pinch-outs.

Pinchout attribute (1)

Pinch-out attribute highlights pinch-outs and high frequency zones.

Pinchout attribute (2)

Pinch-out attribute cropped between the Top Mishrif and 240ft below the Top Mishrif.

Pinchout attribute (3)

Opacity render of the pinch-out attribute.

Displayed in 3D render mode 240ft thick below the Mishrif

Opacity render of the pinch-out attribute.

Geobody delineation

A close correlation Displayed in 3D render mode between the extracted 240ft deep below the Mishrif geobodies and the 4 surface and 8 cyc/kft response in the RGB blend can be observed. 4cyc/kft 8cyc/kft Scvc/kft Trough Peak Increasing geobody size

SkinIn volume

The Skin In volume showing the outer edge of the geobody embedded into the spectrally enhanced data.

Conclusions

- The objective was to identify the geometry and position of the rudist reefs.
- Data conditioning techniques improved the image of the reefs and pinch-out locations.
- Frequency Decomposition and RGB blending identified the pinch-outs and gave an indication of their size and extent.
- Geobody extraction accurately detailed their size and extent.

